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Propagation Losses of Guided Modes in an
Optical Graded-Index Slab Waveguide
with Metal Cladding

MASAMITSU MASUDA, AKIHITO TANJI, YASUHIRO ANDO, anp JIRO KOYAMA

Abstract—Analytical results for propagation losses of guided
modes in a graded-index slab waveguide (GISW) with metal cladding
are presented. When the permittivity in the guiding layer decreases
linearly away from the metal surface, the attenuation constant o of
well-guided modes, TE and TM, is approximately proportional to
only the ratio (A¢/ey)/d;, where Ag; is the increment in the per-
mittivity at the metal surface in the direction of the polarization of
optical waves, d; is the diffusion depth in this direction, and &, is the
permittivity of free space.

1. INTRODUCTION

LECTROOPTIC crystal, such as LiINbO; or LiTaO,,

is very promising for use as the substrate of an in-
tegrated optical circuit. Recently, several experiments have
been reported on the techniques for fabricating optical
guides in these crystals, which consist of diffusing suitable
metal ions into the substrate [1], [2] and out-diffusing Li,O
from the surface [3]. These methods yield a graded-index
slab waveguide (GISW) instead of a step-index slab wave-
guide (SISW) in which the guiding layer has the space-
invariant permittivity. Analyses of guided modes in the
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GISW have been made for the exponential [4] and linear
[5] profiles of the permittivity. To interact the guided modes
with low-frequency electromagnetic fields, metal electrodes
with planar structures are generally needed. The GISW
should become lossy due to the metal cladding on the sur-
face. The effects of metal cladding have been examined for
the SISW in homogeneous media in order to form a mode
filter and an optical strip line [6]-[8]. On the other hand,
the guiding properties of a metal-clad GISW, especially
propagation losses of guided modes, have not been eluci-
dated. ‘

In this paper, propagation losses of guided modes in the
GISW with metal cladding are analyzed under the assump-
tion that the permittivity in the guiding layer decreases
linearly away from the metal surface, taking the anisotropy
of the electrooptic crystal into account. The effective
thickness of the guiding layer is derived approximately. The
attenuation constant o of guided modes in a metal-clad
GISW is estimated in comparison with the attenuation
constant ag of guided modes in a metal-clad SISW.

Numerical solutions of the dispersion equation are given
for both TE and TM modes in c-plate LiNbO;.

II. ANALYSIS

A. Derivation of the Dispersion Equation

In our analysis, we assume that the optical wave varies as
exp j(wt — k, z) and that all quantities are independent of x,
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Fig. 1. The profiles of the permittivities along the depth in a metal-clad
GISW. The guiding layer and the.substrate below y =0 consist of
electrooptic crystal. The subscript i denotes x, y, or z, and d, is the
diffusion depth.

ie., 8/0x = 0. The profile of the permittivities is shown in
Fig. 1 and is given for i = x,y,z, as follows:

&1 = &g + Jer, yz0
&(y) = &0 + Ae(1 + y/d;), —-d;<y<0
&l(y) = i y< —d; (1)

where d; is the diffusion depth. Since the frequency of the
propagating light wave is lower than the plasma frequency
of the metal, e and ¢; have negative values and the dielectric
slab with the metal cladding becomes lossy. When c-plate
LiNDbQ, is, for example, in-diffused with metal ions, then we
have d, # d., Ae, # Ae¢,, and &, # &,0. The resulting ex-
pressions are so lengthy that we deal with the case ofd, = d,
for simplicity in this section.

Assuming that ¢,(y) changes slowly compared with the
optical wavelength 4, (d/dy)[In ¢,(y)] may be neglected for
TM modes. The following equations can be obtained in the
guiding layer —d; < y < 0if only the terms of the first order
in Ae, and Ag, are retained:

ZGx 5
a—yz+a(y+y0)Gx=0 )
where
G — E., for TE modes (3)
* \H./e.(0)/eo,  for TM modes
Ag; [eq 1
2 _ i 2
“= ( 4, )ks [1——AKy+AKZ
1 k\?
K —AK)) 52
: (K. —AK) Ae, /eo (ks) ”
k 2
-
a
k}z, = (8i0 + Aei)kf/(?() - K(]. fand AKy ‘l" AKz)kZ (4)

and

K=1, AK, = AK,, i=X, for TE modes
AK, = Ag, /ey,

for TM modes.  (5)

K = 8zO/EyO’

AI<z = Agz/gzo, i= Vs
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ks equals 27/4 and k, is the transverse wavenumber of the
guided modes on the metal surface at y = 0.

Considering that Re (y,) ranges between d; and zero for
guided modes, the exact solutions of (2) can be expressed in
terms of Airy functions [9]. For Re (y + y,) > 0, we obtain

G,= CzAi(_C1)+C3Bi(_C1) (6)

where C, and C,; are arbitrary coefficients and
{4 =a**(y + yo). On the other hand, G, should be a
monotonically decaying function over the range of
Re (y + yo) <0 within the guiding layer; therefore, the
arguments of Airy functions must be replaced by {,, where
(o= —a®3(y + yo).

In the substrate below y = —d; and in the metal above
y =0, all ficlds of guided modes decay exponentially as
follows:

G, = C,exp (y3)), y < —d; ™
G.,=Cyexp(—7y1y), yz0 (8)
i = K(kf — &i0k;/e0) ©)
1= ki —e1ki/eo. (10)

Introducing the boundary condition that tangential com-
ponents are continuous on two interfaces, at y =0 and
y = —d,, to eliminate arbitrary coefficients C,, C,, C5, and
C,, we can obtain the dispersion equation if the representa-
tions of Airy functions in terms of Bessel functions are used,
as follows:

J2/3(”0) —g1J- 1/3(“0) _ 12/3(“4) +g,1 1/3(“a)
J_23o) + g1 d1yaue) 1 33(a) + g2 113 ()

where for TE modes
g1 ="1/k,

(11)

g.=1
for TM modes

&20 Y1 1 AKZ 1
= "2+ AK ) 2 o[
91 {81 ( z)} k T2 (1 n AKZ) k,d,
1 1
=1-+AK
gz 2 z 7, dy (12)
and
o =3ay3?  uy=3ald; — yo)*”.

B. The Effective Thickness of the Guiding Layer

The exact solutions of (11) can be obtained by numerical
computation, as shown in the next section. We are interested
in only the dominant factors, though, which influence the
attenuation constant. To estimate the effective thickness of
the guiding layer, the metal is assumed to be a perfect
conductor; accordingly the GISW becomes lossless. The
validity of this assumption can be seen by the following
argument: the difference between ¢ and ¢;, is much larger
than Ag;, so that there is little penetration of the field into the
metal.

The right-hand side of (11) is a monotonically increasing
function for the variable u,. Its value equals zero at the cutoff
of the guided modes, where k, reduces to ks\/ £:0/€0
(i = x,y). When optical waves are poorly guided, its value is
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small. Its value increases rapidly and then is very close to
unity for well-guided modes. Using asymptotic expressions
of Bessel functions, the approximate expression of (11) can
be reduced to the following relation for well-guided modes:

uo = (g — ¥ (13)
where the mode number g corresponds to the number of
extrema which each field component has within the guiding
layer. If y, is defined by y, under the assumption that the
metal is a perfect conductor, we obtain

s 102 1 di 1/2)2/3
yexiHg—a)m ’Z(M) } .

It is easily understood from (2) that the surface of y = —y,
is the turning surface in the lossless GISW. The field function
G,(y) becomes oscillatory over the range —y, <y <0,and
then reduces to an exponentially decaying function below
y = —J,. It is possible to regard y, as the effective thickness
of the guiding layer in the lossless GISW. Even if the metal
has the complex permittivity in the actual metal-clad GISW,
the effective thickness of the guiding layer should be close to
that for the above lossless GISW.

(14)

C. Estimation of the Attenuation Constant

We will estimate the attenuation constant of guided
modes, in comparison with that for the metal-clad SISW.
Two-dimensional analysis of the SISW [7], [8] indicates that
the attenuation constant a4is proportional to (gA)?/b® where
b is the thickness of the guiding layer which has the
space-invariant permittivity ¢, + Ag;. ag is scarcely
influenced by the increment of the permittivity Ae;under the
condition Ag; < ;.

The effective thickness y, of the GISW in (14) corresponds
to b. It is implied in (13) or (14) that (g — %) in the GISW
should correspond to ¢ in the SISW; in other words, a linear
distribution of the permittivity in the GISW brings the
constant phase shift 7/2 to guided modes. Consequently,
comparing the GISW with the SISW, we have the following
corresponding relations:

(g—2<q (15)

Replécing b and ¢ in the proportional expression
as oc (gA)*/b> by y, and (g — ), respectively, the attenuation
constant ag for the metal-clad GISW can be estimated:

Ag; /e
d;
Since the effective thickness varies with {(g — $)4}*, as
indicated in (14), & is independent of the mode number gin

the resulting expression (16). This is an essential feature of
the GISW.

y,ob and

oG oC A (16)

II1. NUMERICAL SOLUTIONS AND DISCUSSIONS

The dispersion equation (11) was numerically solved by
the conventional Newton-Raphson method. Calculations
were also made for aluminum and c-plate LINbO ; with the ¢
axis along y. We assumed €, /€0 = €,0/60 = 2.29%,€,0/80 =
2.20% and ¢, /e = —27.0 — j17.6 for the wavelength 0.6328
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Fig. 2. Attenuation constants of guided modes in a metal-clad GISW. (a)
TE modes. (b) TM modes. Calculations were made for the GISW in
c-plate LiINbO, with aluminum surface cladding. The given values were
Ex0/80 = E50/80 = 2297, &9/ = 2.20%, and &, /6, = —27.0 — j17.6 for
the wavelength 0.6328 um. Also we assumed Ae, /e, = 1.05 x 1072 and
d,=d,.

um of the He-Ne laser light [10). Fig. 2 shows the depen-
dency of ag on Ag; /g, where the parameter is the diffusion
depth d; and where we assumed Ag, /e, = 1.05 x 1072
Except in the neighborhood of the cutoff, the attenuation of
well-guided modes increases linearly with Ag, /e, for any
diffusion depth. ag is not dependent on the mode number g,
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but decreases for the higher order modes by a small amount.
This tendency is particularly clear for TM modes in a
thinner guide of d, = 10 um.

The attenuation decreases rapidly near the cutoff, as
shown in Fig. 2. This is caused by the fact that the concentra-
tion of fields on the metal surface is lowered, as guided
modes are close to the cutoff.

The attenuation rate caused by the metal cladding is
larger for TM modes than TE modes. If Ae, = A¢ holds for
well-guided modes, the attenuation of the TM modes is
about eight times as much as that of the TE modes, except
the lowest TM mode which behaves like a surface plasma
wave [7]. The anisotropy of electrooptic crystal is not a
dominant factor influencing the attenuation, but other
settings of the c axis change the value of & ;slightly. When the
¢ axis lies, for example, in the x direction, a; for TE modes
decreases by 2.4 percent, while for TM modes it increases by
10.5 percent. The above discussions have been made for the
case of d, = d,. However, d, and d, are, in general, different
from each other. In the most extreme case, the refractive
index in the z direction is unchanged, that is, we haved, = 0
and Ae, = 0, simultaneously. This situation can be realized
by out-diffusing c-plate LINbO; [3]. & s for TM modes in this
case is smaller than in the case of Fig. 2 by a few percent. Our
results, which were obtained under the assumption that
d, = d,, are scarcely influenced by As, and the difference of
the diffusion depth in different directions.

IV. CONCLUSION

We have discussed analytically the results of propagation
losses of guided modes in a metal-clad GISW. In conclusion,
the attenuation constant «; for well-guided TE and TM
modes in this optical waveguide is approximately propor-
tional to only the ratio (Ae;/e)/d;. This feature of the
metal-clad GISW, which is remarkably different from the
feature for a metal-clad SISW, is caused by the variation of
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the effective thickness of the guiding layer with respect to g,
A, Ag;, and d,.

Even if the profile of the permittivity in a diffused
waveguide has the form of a complimentary error, a Gaus-
sian or an exponential function, as observed in the actual
guiding layer, it should be possible to find a straight line
fitting each function to the first-order approximation. There-
fore, the results presented in this paper may hold for an
actual profile of the permittivity in the GISW.
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